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Abstract

Continual learning (CL) can help pre-trained vision-
language models efficiently adapt to new or under-trained
data distributions without re-training. Nevertheless, dur-
ing the continual training of the Contrastive Language-
Image Pre-training (CLIP) model, we observe that the
model’s zero-shot transfer ability significantly degrades due
to catastrophic forgetting. Existing CL methods can miti-
gate forgetting by replaying previous data. However, since
the CLIP dataset is private, replay methods cannot access
the pre-training dataset. In addition, replaying data of pre-
viously learned downstream tasks can enhance their per-
formance but comes at the cost of sacrificing zero-shot per-
formance. To address this challenge, we propose a novel
method ZSCL to prevent zero-shot transfer degradation in
the continual learning of vision-language models in both
feature and parameter space. In the feature space, a ref-
erence dataset is introduced for distillation between the
current and initial models. The reference dataset should
have semantic diversity but no need to be labeled, seen
in pre-training, or matched image-text pairs. In parame-
ter space, we prevent a large parameter shift by averag-
ing weights during the training. We propose a more chal-
lenging Multi-domain Task Incremental Learning (MTIL)
benchmark to evaluate different methods, where tasks are
from various domains instead of class-separated in a sin-
gle dataset. Our method outperforms other methods in
the traditional class-incremental learning setting and the
MTIL by 9.7% average score. Our code locates at https:
//github.com/Thunderbeee/ZSCL.

1. Introduction
Most deep learning models can access all the data during

training [32, 19, 14]. If we want to expand a model’s knowl-
edge, such as learning a newly found animal species [47],
we can re-train the model by adding new classes to the train-
ing dataset. However, re-training a large model is costly.

(a) Comparison between traditional CL and CL with a pre-trained vision-language model
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(b) Performance of different methods on preventing forgetting phenonmenon 
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Figure 1. a) Conventional CL learns distinct task-specific heads,
while CL with vision-language models can predict both learned
tasks and out-of-distribution tasks. b) Accuracy (%) changes dur-
ing CL of four datasets on 11 datasets. Our method is superior to
others in preventing the forgetting of both zero-shot transfer ability
and new knowledge.

In contrast, continual learning (CL) [39, 54] incrementally
learns task one after another. It can reduce this cost by
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only learning the new data. Nonetheless, a model tends to
forget previous information catastrophically when learning
new tasks [54, 39, 65]. The “catastrophic forgetting” phe-
nomenon is a great challenge for CL.

Recently, vision-language models have shown power-
ful zero-shot transfer ability [51, 27, 37]. They can give
zero-shot predictions without any training examples of a
task. However, the performance on some tasks is poor due
to insufficient relevant image-text pairs in the pre-training
datasets. For example, it is difficult for CLIP [51] to
distinguish among digital numbers, with an accuracy on
MNIST [10] below 60% much lower than a naively trained
CNN [34]. If we want to widen the knowledge in the vision-
language model by re-training, the computational cost is too
large (e.g., CLIP is pretrained on 400 million image-text
pairs). Fine-tuning downstream tasks achieves high per-
formance, but one model for a task takes much memory,
and the model is not reusable. Prompt learning [71, 70]
keeps the backbone parameters unchanged. However, it
is only effective with limited training data due to a lim-
ited prompt length [71, 28]. In contrast, continual learn-
ing makes learning new knowledge a lifelong process for
the vision-language model. The continually learned model
can handle any image-text input and can be further used for
downstream tasks [13, 60].

We find that existing CL methods hardly prevent the for-
getting phenomenon for zero-shot transfer ability in con-
tinual learning of a pre-trained vision-language model. As
shown in Fig. 1 (a), the CL with a pre-trained vision-
language model differs from the traditional one. Besides
forgetting previously learned task knowledge, the CLIP-
based CL suffers from forgetting pre-training knowledge,
namely a degradation of zero-shot transfer ability. For
the replay-based CL methods [54, 57, 41, 25, 33, 50], the
dataset during pre-training may be private and inaccessi-
ble during fine-tuning. For distillation-based CL meth-
ods [39, 12, 15, 13], they do not lay enough emphasis on
the pre-trained model. On the one hand, a large model state
change hinders tasks thereafter from using high-quality fea-
ture representations. On the other hand, it significantly de-
grades zero-shot performance on unseen datasets.

Our method ZSCL protects the Zero-Shot transfer abil-
ity during Continual Learning. We view the knowledge
stored in the pre-training model from two perspectives: a
well-learned feature space and a good value in the parame-
ter space. In feature space, we re-design previous distilla-
tion loss [22, 54] with different loss styles, teacher models,
and data sources. We find the original CLIP model, as op-
posed to the newly acquired model, is the best option for
the teacher model. Instead of using data collected from pre-
vious tasks [54] or current task [22], we find a reference
dataset with diverse semantics (e.g., images sampled from
ImageNet) is a good option for distillation loss. The refer-

ence images need not be labeled or matched with the text.
Preserving the relative similarity between reference images
and texts makes the feature space deviate little from the
original. In the parameter space, WiSE-FT [64] proposes in-
terpolating the initial and fine-tuned model for better perfor-
mance. Inspired by this, we ensemble the weights through-
out continuous training to prevent a significant shift from
the initial CLIP, which can be seen as interpolating mod-
els of different zero-shot transfer and downstream task per-
formance tradeoffs. The weight ensemble method is more
stable and not sensitive to hyper-parameters.

To better evaluate our method, we propose a new bench-
mark Multi-domain Task Incremental Learning (MTIL).
Previous CL tasks are crafted by separating classes in one
dataset [16, 67, 72], where the images and classes are within
a single domain. In contrast, MTIL consists of data from
different sources requiring different expert knowledge. It
comprises 11 tasks ranging from animal species to aircraft
series recognition. As displayed in Fig. 1 (b), when sequen-
tially training CLIP on 11 datasets, the drop in the perfor-
mance of task i after training task i is the traditional for-
getting phenomenon. The degradation in the accuracy com-
pared to the original zero-shot one before training task i
represents the forgetting in zero-shot transfer ability. Our
method better protects the zero-shot transfer ability and
preserves the learned knowledge. We outperform previ-
ous methods in both conventional class-incremental learn-
ing and MTIL settings. In Fig. 1 (b),

To summarize, our contributions are as follows:

• We investigate continual training with the vision-
language model and demonstrate the importance of
preserving zero-shot transfer ability. A more challeng-
ing benchmark MTIL is proposed to evaluate CL meth-
ods where the tasks come from distinct domains.

• We propose a novel method ZSCL to mitigate the
catastrophic forgetting problem in continual learning
of the vision-language model by distillation in the fea-
ture space and weight ensemble in the parameter space.

• The proposed ZSCL outperforms all state-of-the-art
methods across multiple benchmark datasets. On 10
steps CL of CIFAR100 and TinyImageNet, our method
outperforms the best of previous ones by 7.7% and
6.0% for the Last accuracy. On MTCL, ZSCL outper-
forms others by 10.9% on Transfer and 9.7% on Avg.
scores.

2. Related Work
Vision-Language Models. Inspired by the success of lan-
guage foundation models such as GPT-3 [5] and T5 [52], a
series of work pre-train vision-language models on large-
scale image-text datasets [36, 51, 27]. Among them,



Contrastive Language-Vision Pre-training [51] achieves re-
markable performance on various downstream tasks. It con-
centrates on aligning images and texts to acquire a joint
embedding space. The CLIP model contains an image en-
coder [19, 14] and a text encoder [11]. During pre-training,
contrastive learning is performed in which a paired image-
text is a positive pair while image and text from different
image-text pairs form a negative pair. For inference, the
closest text embedding for the image is chosen as the pre-
diction. Vision-language models can give zero-shot predic-
tions on unseen tasks with a robust zero-shot transfer ability
on various downstream tasks.

Continual Learning Methods. Most existing continual
learning methods can be categorized into four groups: pa-
rameter expansion, memory replay, distillation loss, and pa-
rameter regularization. Parameter expansion methods such
as DyTox [16] and DEN [68] introduce new parameters for
new tasks. As we want to achieve a more powerful CLIP
model at the end of CL, we do not change the architecture
of the CLIP model. Memory replay methods [57, 41, 50,
33, 46] including iCaRL [54] and SER [25] keep a mem-
ory for exemplars from previously learned tasks. However,
pre-training datasets are too large for choosing exemplars
or may not be available at downstream training, and down-
stream data are not good exemplars for preserving the pre-
training knowledge. Distillation loss such as LwF [39],
LwM [12], LwF-VR [13], and PodNet [15] aligns current
output space with previous ones, whereas distillation based
on current tasks are not strong enough to maintain founda-
tional knowledge. For the CLIP model, we find that gen-
eral images, even if never seen by the model, plus sentences
with enough semantics, can be a good “replay” for the dis-
tillation loss. The parameter regularization loss restricts the
flexibility of model parameters by training loss [29, 69, 1]
or weight averaging [35, 64]. Although this type of strat-
egy performs badly compared to other ways in previous re-
search [62, 2], we found it helpful for CLIP continual learn-
ing. The limited parameter space prevents the model from
diverging significantly from its original state.

Vision-Language Models for Downstream Tasks.
Many works propose different training strategies of
vision-language models for better performance on down-
stream tasks, such as CoOp [71], CLIP-Adapter [18] and
WiSE-FT [64]. However, very few attempts at continual
learning exist. Recently, Thengane et al. [60] shows CLIP
zero-shot prediction achieves state-of-the-art performance
in CL settings even without any training. LwF-VR [13]
is a modified LwF method for the CLIP model where
random-generated sentences are used for distillation loss.
However, it only considers the feature space, and the
distillation with random sentences cannot protect the vision

backbone. Differently, we re-examine what should be used
for distillation in the feature space and combine the param-
eter space weight ensemble to provide better performance
for the vision-language model continual learning.

3. Approach

3.1. Preliminaries

Continual Learning. Given n tasks [T 1, T 2, · · · , T n],
continual training is conducted in sequence on each task
T i = (Di, Ci), i = 1, . . . , n. Here, Di represents the task
dataset {(xi

j ,y
i
j}Ni

j=1, where xi
j is an image, yi

j is a one-hot
vector indicating the ground truth, and Ni is the number of
images in the dataset. Class names Ci = {cij}mi

j=1 maps
the label of an image to an object name, where mi is the
number of classes for task T i. The objective of continual
learning is to achieve good performance on all tasks.

Two continual learning settings are focused on in this
study [62]. In task-incremental learning, at inference, the
image x to be predicted is given with its task identity t,
so the model only needs to distinguish between different
classes in Ct. In class-incremental learning, the task iden-
tity t is not given. Thus we need to predict with the com-
bined class set C =

⋃n
i=1 C

i.

CLIP model. The CLIP model contains an image encoder
fi and a text encoder ft. The inference process of the CLIP
model for image classification is as follows. First, for task
T i, each class c is transformed into a sentence by a template
like “a photo of {c}”. Then ft encodes the classes into text
embeddings {tij}mi

j=1. An image encoder encodes input im-
age xk. The similarity score between the image embedding
and text embeddings are calculated as sik,j =

〈
fi(xk), tij

〉
,

where 〈·, ·〉 denotes the cosine similarity. The class with the
largest similarity score is the prediction for the image.

To fine-tune the CLIP model for downstream tasks,
cross-entropy loss CE is applied to the similarity score with
a temperature scaling:

LCE =
1

N

N∑
i=1

CE(τ · si,yi), (1)

where τ is a parameter learned during the pre-training.

3.2. Distillation in Feature Space

Well-learned feature space for aligned images and texts
enables vision-language models’ strong zero-shot trans-
fer ability. It also facilitates the learning of downstream
tasks. Compared with the pre-training dataset, downstream
datasets lie in a small scope in the feature space (shown in
Fig. 2(b)). Direct fine-tuning of downstream tasks greatly
distorts the feature distribution of out-of-distribution data,
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Figure 2. Illustration of ZSCL in feature space. Fig. 3(a) shows the pipeline of distillation. The original and the current model encode the
reference images and texts, respectively. The probability distribution of images and texts with respect to each other is distilled. Fig. 3(b)
displays how distillation loss preserves the feature space. Compared with the reference dataset, the features of fine-tuning tasks lie in a
small subspace. The distillation loss preserves the structure of the feature space by maintaining relative distances.

which leads to a significant drop in zero-shot prediction per-
formance.

While the cross-entropy improves the performance by al-
tering fine-tuned feature subspace, we need a new regular-
ization to preserve the potential out-of-distribution feature
space. The relative similarity between one image and dif-
ferent texts is:

p = Softmax(s1, · · · , sm). (2)

We hope the above similarity distribution is stable dur-
ing fine-tuning for all potential images and texts. Given a
teacher model f , distillation loss can be applied to penalize
changes from the original distribution:

Ldist img = CE(p,p) = −
m∑
j=1

pj · log pj , (3)

where p is the distribution given by the teacher model.
Although the distillation form has been widely used in

previous methods [22, 39, 54], they are applied to contin-
ual learning from scratch. We investigate different com-
ponents of the distillation loss for enhancing pre-trained
vision-language models.

Three components are discussed in this paper in detail:
the data source, the teacher model, and the loss design.
Sec. 5.1 shows the performance for the different choices.
First, for the data source, LwF [39] uses data from the cur-
rent task, while iCarl [54] carefully selects data from pre-
vious tasks. However, data from downstream tasks span
a small subspace and are not good enough to preserve the
whole feature space. An ideal choice is the pre-training
dataset. However, the CLIP pre-training dataset is private,
and the size is too large to load. To solve this challenge,
we introduce the reference dataset. A reference dataset is
a publicly available image dataset with enough semantics.
Enough semantics can be seen as random sampling in the

whole feature space. The texts can be related class names,
unrelated sentences, or even random tokens. This is because
text semantics are easier to sample, and we need not ground
truth to calculate the distance between one image to suffi-
cient text samples spread among feature space.

For the teacher model, [39, 54] use the model after learn-
ing task i-1 and before learning task i as the teacher model.
During the continual training of the vision-language model,
the feature space deviates gradually from the initial model.
Using fine-tuned models as teacher models enlarges this
change. In contrast, we find using the pre-trained model
as a teacher model not only preserves the zero-shot trans-
fer ability but also takes advantage of well-learned feature
space for better downstream performance.

Finally, previous distillation loss is applied on traditional
backbones, where a classification head gives the probabil-
ity for different labels. For the vision-language model, the
probability is calculated based on the relative distance be-
tween images and texts. Thus, in addition to Eq. (3), we
impose regularization Ldist txt on the distances from a text to
a batch of images. The whole framework is shown in Fig. 2
(a) with the following training loss:

L = Lce + λ · (Llwf img + Llwf txt). (4)

3.3. Weight Ensemble in Parameter Space

Machine learning models integrate learned knowledge in
their parameters. To mitigate the forgetting problem, a se-
ries of works [29, 69, 1] impose regularization losses on the
changes of parameters. Weight consolidation (WC) [29] im-
poses the following loss:

LWC =
∑
i

(θi − θi)2. (5)

where θ is the parameters of the current model, and θ is
the reference ones. Although this regularization prevents
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Figure 3. Models during training contain different tradeoffs be-
tween zero-shot and new task performance. Points for FT are
sampled every 100 iterations, and the ones for WiSE-FT means
different α choices. WE ensembles models during training and
achieve better performance.

forgetting, it hinders learning new tasks in a challenging CL
setting.

Apart from regularization losses, another method in
parameter space is to ensemble different model weights.
Model soup [63] averages weights of multiple fine-tuned
models to improve the model’s robustness but introduces
additional training costs. WiSE-FT [64] propose a weighted
average between fine-tuned model and the original model to
improve the out-of-distribution prediction robustness:

f(x; (1− α) · θ0 + α · θ1), (6)

where θ0 is the original model and θ1 is the fine-tuned
one. However, this method is hyper-parameter-sensitive
where different α gives different tradeoffs between zero-
shot transfer ability and downstream task performance (blue
line in Fig. 3.

Inspired by this, we extend the weighted average to the
CL setting. The motivation for the weighted average is to
prevent fine-tuning from losing too much knowledge in the
original model. As training goes by (green line in Fig. 3),
the model performs better on new tasks while losing accu-
racy on previous ones. The models among training com-
pose a sequence of different learning-forgetting tradeoffs.
Instead of interpolating only between the initial and the fi-
nal model, our method weight ensemble (WE) averages the
weights in the sequence during the training time:

θ̂t =

{
θ0 t = 0
1

t+1θt + t
t+1 · θ̂t−1 every I iterations

. (7)

where model weight sampling happens every I iteration.
The method is related to Stochastic Weight Averaging
(SWA) [26], but we do not use a modified learning rate
schedule here because instead of getting better generaliza-
tion ability, WE aim to give an improved learning-forgetting
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Figure 4. Fig.(a): examples of tasks from different domains in
MTIL benchmark. Fig.(b): illustration of calculating metrics
Transfer, Avg. and Last during continual learning.

tradeoff. As shown in Fig. 3, WE achieves better per-
formance on downstream tasks than WiSE-FT. In addi-
tion, while WiSE-FT is sensitive to different values of α,
our method is much more robust under different hyper-
parameter (I) choices.

4. Multi-domain Task Incremental Learning

Conventional Continual Learning Benchmark. A
benchmark consisting of several tasks is needed to evaluate
different methods for continual learning. Most previous
benchmarks are built by separating classes in a single
dataset, such as MNIST [62], CIFAR100 [16], TinyIma-
geNet [67], and ImageNet [67, 72]. We also evaluate our
method with traditional benchmarks. In CIFAR100 [31],
classes are separated into groups to build tasks. Suppose
the dataset has m classes, a k-step setting means we learn
m/k classes in each new task. The CIFAR100 contains
100 classes, and the setting of 10, 20, and 50 steps are
visited. For TinyImageNet with m = 200, the first step
learns 100 classes, and the rest is learned with 5, 10, and
20 steps. As for ImageNet-100, we have two settings:
ImageNet-100-B0, which includes the same amount of
classes for each step, and ImageNet-100-B50, which has
50 classes for the first step, and the remaining 50 classes
are observed progressively over the next 10 stages. For
ImageNet [9], we investigate a 10-step setting, which learns
100 new classes per task.

MTIL Benchmark. Different classes from one dataset
share the common image source and a similar style [55, 21].
Thus, we propose Multi-domain Task Incremental Learn-
ing (MTIL), a cross-domain version of task incremental
learning. Different tasks are collected from different do-
mains, requiring different domain knowledge for humans to



Table 1. Ablation experiments. Default settings are marked in gray , which uses image and text distillation loss with the initial CLIP
model on 100k ImageNet images and texts generated from ImageNet classes with a simple template.

(a) Continual learning loss.

loss Transfer Avg. Last
CE only 44.6 55.9 77.3
Feat. Dist. 47.6 58.7 77.1
Image-only 56.5 68.9 82.1
Text-only 56.7 69.0 82.6
Both 56.8 69.2 83.0

(b) Data sources for replay.

source Transfer Avg. Last
current 56.7 66.5 80.2
ImageNet 56.8 69.2 83.0
CC 57.2 68.5 80.9
CIFAR100 55.2 65.9 80.7
Flowers 54.7 66.0 80.8

(c) Text sources for replay.

source Transfer Avg. Last
current 51.8 64.9 82.0
prev. all 54.0 70.2 83.7
1k classes (IN) 56.8 69.2 83.0
13k Sent. (CC) 58.9 70.5 84.0
1k Rand. Sent. 58.7 70.2 83.8

(d) Teacher model.

source Transfer Avg. Last
Initial 56.8 69.2 83.0
n− 1 53.9 66.6 80.7

WiSE(0.5) 56.4 68.9 82.9
WiSE(0.8) 56.2 67.8 81.3

(e) # images for replay.

#image Transfer Avg. Last
1M 58.7 70.1 83.2

100k 56.8 69.2 83.0
10k 57.8 68.7 81.2
1k 56.3 67.6 80.8

(f) # image classes for replay.

#class Transfer Avg. Last
1000 56.8 67.6 83.0
100 56.7 67.3 82.3
10 53.8 66.4 81.0
1 53.1 65.5 80.5

Table 2. Ablation study of different components for ZSCL.

Method Transfer ∆ Avg. ∆ Last ∆

CLIP ViT-B/16@224px
Zero-shot 69.4 0.0 65.3 0.0 65.3 0.0
Continual Learning 44.6 -24.8 55.9 -9.4 77.3 +12.0
+ Distillation 58.9 -10.5 70.5 +5.2 83.8 +18.5

+ WiSE-FT (best α) 61.7 -7.7 71.6 +6.3 83.3 +18.0
+ WE (ZSCL∗) 62.2 -7.2 72.6 +7.3 84.5 +19.2
+ WC 67.6 -1.8 74.5 +9.2 83.2 +17.9

+ WiSE-FT 67.7 -1.7 74.2 +8.9 81.9 +16.6
+ WE (ZSCL) 68.1 -1.3 75.4 +10.1 83.6 +18.3

achieve high accuracy. Our MTIL benchmark consists of
11 tasks (detailed in supplementary materials), as some of
the tasks illustrated in Fig. 4 (a). The MTIL benchmark is
very challenging with a total number of 1,201 classes. We
propose two training orders detailed in the appendix, and by
default, the results are given under training order-I.

Evaluation Metrics. The metrics of MTIL are illustrated
in Fig. 4(b), where rows represent training steps and a
column shows performance for one dataset. For conven-
tional continual learning, only scores under the diagonal are
meaningful, since they cannot give zero-shot predictions on
unseen tasks. In contrast, the zeros-hot transfer ability en-
ables a vision-language model to provide predictions for all
datasets. The average accuracy on all datasets among all
timestamps is the “Avg” metric. The “Last” metric is the
average performance of all tasks after CL. The “Transfer”
metric is the average task performance in the upper-right
triangle of the matrix. Every task’s performance is first av-
eraged to equal the weight of each dataset. It measures to
what extent the zero-shot transfer ability is preserved. Be-
fore learning task i, tasks not earlier than i are not fine-
tuned. Thus, their performance is an indicator of zero-shot
transfer ability.

Table 3. Comparison of different methods on MTIL.

Method Transfer ∆ Avg. ∆ Last ∆

CLIP ViT-B/16@224px
Zero-shot 69.4 0.0 65.3 0.0 65.3 0.0
Continual Learning 44.6 -24.8 55.9 -9.4 77.3 +12.0

LwF [39] 56.9 -12.5 64.7 -0.6 74.6 +9.0
iCaRL [54] 50.4 -19.0 65.7 +0.4 80.1 +14.8
LwF-VR [13] 57.2 -12.2 65.1 -0.2 76.6 +11.3
WiSE-FT [64] 52.3 -17.1 60.7 -4.6 77.7 +12.4

ZSCL∗ (Ours) 62.2 -7.2 72.6 +7.3 84.5 +19.2
ZSCL (Ours) 68.1 -1.3 75.4 +10.1 83.6 +18.3

5. Experiments

Implementation. We use CLIP [51] model with im-
age encoder ViT-B/16 [14]. We conduct training with
AdamW [42] optimizer and use a label smoothing [44] tech-
nique for a better baseline result. For multi-domain task
continual learning, we train 1K iterations for each task,
while for class-incremental learning, we follow the same
evaluation setting in [16]. More implementation details can
be found in the supplementary material.

5.1. Main Properties

We ablate our method in feature-space in Tab. 1, and dif-
ferent choices for parameter-space regularization in Tab. 2.
Several interesting characteristics are noted.

Continual learning loss. In Tab. 1a, several types of loss
for feature space are tested. The Feature Distance penaliz-
ing absolute distances achieves a low accuracy. Distillation
loss on probability distribution regularizes relative distance
in the feature space. With image-only or text-only distilla-
tion, the Transfer, Avg., and Last accuracy all improve. A
further boost in performance occurs with both of the distil-
lation losses.



Table 4. Transfer, Avg., and Last scores (%) of different continue training methods on MTIL benchmark.
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CLIP ViT-B/16@224px
Zero-shot 24.3 88.4 68.2 44.6 54.9 71.0 88.5 59.4 89.0 64.7 65.2
Fine-tune 62.0 95.1 89.6 79.5 98.9 97.5 92.7 99.6 94.7 89.6 81.8

Transfer
Continual-FT 67.1 46.0 32.1 35.6 35.0 57.7 44.1 60.8 20.5 46.6
LwF [39] 74.5 56.9 39.1 51.1 52.6 72.8 60.6 75.1 30.3 55.9
iCaRL [54] 56.6 44.6 32.7 39.3 46.6 68.0 46.0 77.4 31.9 60.5
LwF-VR [13] 77.1 61.0 40.5 45.3 54.4 74.6 47.9 76.7 36.3 58.6
WiSE-FT [64] 73.5 55.6 35.6 41.5 47.0 68.3 53.9 69.3 26.8 51.9
Dist. only 80.1 62.2 40.2 39.9 58.1 80.8 53.4 74.6 38.1 61.9
ZSCL∗ 78.3 64.0 42.9 45.2 63.5 84.2 56.1 78.9 44.1 64.3
ZSCL 86.0 67.4 45.4 50.4 69.1 87.6 61.8 86.8 60.1 66.8

Avg.
Continual-FT 25.5 81.5 59.1 53.2 64.7 51.8 63.2 64.3 69.7 31.8 49.7
LwF [39] 36.3 86.9 72.0 59.0 73.7 60.0 73.6 74.8 80.0 37.3 58.1
iCaRL [54] 35.5 89.2 72.2 60.6 68.8 70.0 78.2 62.3 81.8 41.2 62.5
LwF-VR [13] 29.6 87.7 74.4 59.5 72.4 63.6 77.0 66.7 81.2 43.7 60.7
WiSE-FT [64] 26.7 86.5 64.3 57.1 65.7 58.7 71.1 70.5 75.8 36.9 54.6
Dist. only 48.1 90.6 79.8 63.2 75.6 72.5 84.7 70.2 79.8 46.9 63.7
ZSCL∗ 50.7 90.9 79.8 63.8 76.6 77.3 87.0 71.9 83.0 52.0 65.9
ZSCL 45.1 92.0 80.1 64.3 79.5 81.6 89.6 75.2 88.9 64.7 68.0

Last
Continual-FT 31.0 89.3 65.8 67.3 88.9 71.1 85.6 99.6 92.9 77.3 81.1
LwF [39] 26.3 87.5 71.9 66.6 79.9 66.9 83.8 99.6 92.1 66.1 80.4
iCaRL [54] 35.8 93.0 77.0 70.2 83.3 88.5 90.4 86.7 93.2 81.2 81.9
LwF-VR [13] 20.5 89.8 72.3 67.6 85.5 73.8 85.7 99.6 93.1 73.3 80.9
WiSE-FT [64] 27.2 90.8 68.0 68.9 86.9 74.0 87.6 99.6 92.6 77.8 81.3
Dist. only 43.3 91.9 81.3 72.4 95.1 90.5 90.4 99.7 92.5 85.1 81.8
ZSCL∗ 46.0 92.3 81.2 72.4 93.0 92.1 90.8 99.6 93.3 86.6 81.7
ZSCL 40.6 92.2 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2

Data source for replay. Tabs. 1b, 1c, 1e and 1f seek
the standard for a good reference dataset. As shown in
Tab. 1b, distillation on images of current tasks achieves a
good Transfer score. However, it hinders the learning on
new tasks and results in a low Avg. and Last score. Im-
ages in a specific domain (e.g., Flowers) are also not good
choices. General images in ImageNet and Conceptual Cap-
tion (CC) datasets are examples of good reference datasets.
These images are easily available by a web crawler [61].
Text with more semantics can improve performance (shown
in Tab. 1c). When using sentences from the Conceptual
Caption dataset [56], or even sentences randomly generated
from the CLIP vocabulary, there is no ground truth target
among the texts for the image from the ImageNet dataset.
However, they all achieve an improvement due to more se-
mantics. The reference image dataset does not need to be
labeled, matched with the text, or seen by the CLIP model.

Enough semantics in the reference image dataset boosts
the distillation performance. In Tabs. 1e and 1f, a smaller
number of images and classes all lead to a degradation in

the performance. Fewer classes of images in the refer-
ence dataset have a worse impact on the performance com-
pared with the image numbers. To keep a reasonable mem-
ory buffer, we randomly sample 100k images from Ima-
geNet for MTIL and use texts from CC dataset. For class-
incremental learning, conceptual caption dataset’s valida-
tion set (28k images) is used to avoid information leakage.

Teacher model. Tab. 1d shows the performance of dis-
tillation loss with different teacher models. Unlike con-
ventional continual learning, the teacher model should not
be the one trained on the previous task; otherwise, the de-
viation from the initial CLIP in the previous task may be
amplified. In contrast, with the initial CLIP as the teacher
model, not only is the zero-shot performance improved but
the Mean and Last scores are also boosted, indicating that
preserving high-quality feature space facilitates continual
learning.



Table 5. Comparison of state-of-the-art CL methods on CIFAR100
benchmark in class-incremental setting.

10 steps 20 steps 50 steps
Methods Avg Last Avg Last Avg Last

UCIR [23] 58.66 43.39 58.17 40.63 56.86 37.09
BiC [65] 68.80 53.54 66.48 47.02 62.09 41.04
RPSNet [53] 68.60 57.05 - - - -
PODNet [15] 58.03 41.05 53.97 35.02 51.19 32.99
DER [67] 74.64 64.35 73.98 62.55 72.05 59.76
DyTox+ [16] 74.10 62.34 71.62 57.43 68.90 51.09

CLIP [51] 74.47 65.92 75.20 65.74 75.67 65.94
FT 65.46 53.23 59.69 43.13 39.23 18.89
LwF [39] 65.86 48.04 60.64 40.56 47.69 32.90
iCaRL [54] 79.35 70.97 73.32 64.55 71.28 59.07
LwF-VR [13] 78.81 70.75 74.54 63.54 71.02 59.45
ZSCL (Ours) 82.15 73.65 80.39 69.58 79.92 67.36
Impr +7.68 +7.73 +5.19 +3.84 +3.95 +1.42

Parameter-space regularization. In Tab. 2, we experi-
ment with three different parameter-space regularizations.
We experiment two variants of WiSE-FT [64]: the weighted
average between the current model with the initial CLIP
or the one at the previous task. The result shows the lat-
ter one is a better choice because keeping weight averag-
ing with initial CLIP loses the newly learned knowledge.
We experiment with different α choices for WiSE, and the
best result is reported. While distillation loss improves
the whole performance, the parameter-space regularization
further protects the zero-shot transfer ability with a higher
Transfer. Among the three parameter-space regularization,
only WE achieves a better Last score. WC greatly improves
the Transfer scores with a lower Last score. A combina-
tion of the weight consolidation loss with weight ensemble
achieves a better tradeoff between Transfer and Last value.
While ZSCL∗, a variant without the WC loss, obtains the
highest Last score, the ZSCL with WC loss outperforms it
with 2.8% Avg. and 5.9% Transfer scores.

5.2. Multi-domain Task Incremental Learning

Tab. 3 displays the performance of different methods
on the MTIL benchmark, and Tab. 4 presents the detailed
Transfer, Avg, and Last metrics on each dataset. Zero-shot
denotes the zero-shot prediction performance of the initial
CLIP model, and Fine-tune means the direct fine-tuning
accuracy on each dataset, which can be seen as an upper-
bound where no forgetting phenomenon happens. Contin-
ual learning uses cross-entropy loss to learn each dataset
sequentially, where there is a significant forgetting issue on
both zero-shot predictions (Transfer drops by 24.8%) and
newly learned knowledge (Last drops by 9.4%). Previous
methods improve the Last performance slightly and cannot
maintain a high zero-shot prediction performance. Without

Table 6. Comparison of different methods on TinyImageNet splits
in class-incremental settings with 100 base classes.

5 steps 10 steps 20 steps
Methods Avg Last Avg Last Avg Last

EWC [29] 19.01 6.00 15.82 3.79 12.35 4.73
EEIL [6] 47.17 35.12 45.03 34.64 40.41 29.72
UCIR [23] 50.30 39.42 48.58 37.29 42.84 30.85
MUC [40] 32.23 19.20 26.67 15.33 21.89 10.32
PASS [72] 49.54 41.64 47.19 39.27 42.01 32.93
DyTox [16] 55.58 47.23 52.26 42.79 46.18 36.21

CLIP [51] 69.62 65.30 69.55 65.59 69.49 65.30
FT 61.54 46.66 57.05 41.54 54.62 44.55
LwF [39] 60.97 48.77 57.60 44.00 54.79 42.26
iCaRL [54] 77.02 70.39 73.48 65.97 69.65 64.68
LwF-VR [13] 77.56 70.89 74.12 67.05 69.94 63.89
ZSCL (Ours) 80.27 73.57 78.61 71.62 77.18 68.30
Impr +10.65 +8.27 +9.06 +6.03 +7.69 +3.00

WC, ZSCL∗ achieves the best Last scores, outperform pre-
vious best one by 4.4%. Our method ZSCL improves 9.1%
on Transfer accuracy, with only 1.3% drops compared with
the initial CLIP model, and achieves a 10.1% gain in the
Avg. accuracy.

5.3. Class Incremental Learning

We evaluate our methods on conventional class incre-
mental learning, which shows our method’s ability in learn-
ing new tasks and preventing previously learned knowledge.
Tab. 5 and Tab. 6 display the results on CIFAR100 and Tiny-
ImageNet, respectively. We re-implement some previous
methods with a CLIP backbone (after CLIP in the table),
while others using a special network design cannot be eas-
ily adapted. Although zero-shot CLIP prediction achieves a
good result on these benchmarks, continual learning with
direct fine-tuning or LwF [39] degrades the performance
greatly, especially under the setting of a large step num-
ber. This demonstrates a severe catastrophic forgetting phe-
nomenon in fine-tuning the CLIP model. Our method con-
sistently improves the performance of the CLIP model on
both Avg. and Last scores with a large gap towards previ-
ous ones.

6. Conclusion
In this paper, we investigate continual learning with

the vision-language model. We propose a better contin-
ual learning algorithm to protect the zero-shot transfer abil-
ity in the vision-language model learned in the pre-training
stage. Our algorithm mitigates the catastrophic forgetting
in both feature space and parameter space. In feature space,
distilling the initial model on a reference dataset signifi-
cantly boosts the model’s performance. In parameter space,
weight ensemble among different training stages alleviates



the forgetting issue. We propose a more challenging Multi-
domain Task Incremental Learning (MTIL) benchmark to
evaluate the continual learning methods better. On both
conventional and new benchmarks, our method achieves
state-of-the-art performance.
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Appendix

A. Additional Benchmark Description

Tab. 7 displays the detailed information for different
datasets in our benchmark. Two orders are used for the
evaluation; the first one is alphabet order (Order-I): Air-
craft, Caltech101, CIFAR100, DTD, EuroSAT, Flowers,
Food, MNIST, OxfordPet, StanfordCars, SUN397. And
the second one is a random order (Order-II): StanfordCars,
Food, MNIST, OxfordPet, Flowers, SUN397, Aircraft, Cal-
tech101, DTD, EuroSAT, CIFAR100.

B. Additional Implementation Details

Our implementation is based on PyTorch [49]. We use
batch size 64 for the MTIL benchmark and 128 for the
class-incremental learning benchmark. The learning rates
are searched among {10−5, 10−6, 10−7}. Label smooth-
ing [44] can substitute the regularization of weight de-
cay and achieve better performance. the label smooth-
ing strength is searched among {0.1, 0.2, 0.3}. In general,
for MTIL, CIFAR100, and TinyImageNet, weight decay 0
and label smoothing 0.2 are good choices. For ImageNet,
weight decay 0.1 and label smoothing 0 are used. We ex-
periment with I ∈ {1, 10, 100} and find slight changes in
performance and thus fix I to 100. A large λ hinders learn-
ing new knowledge, and λ = 1 is a good choice.

C. Additional MTIL Results

The complete result of the MTIL benchmark with t
datasets is a matrix of t × t. It is difficult to compare dif-
ferent matrices between different methods, so we summa-
rize the performance by three indicators in the main text.
Here, we show the complete matrix of ZSCL in Tab. 12 and
ZSCL∗ in Tab. 11.

The result of the MTIL method in Order-II is presented
in Tabs. 8 and 9. Our method surpasses previous methods
in another order setting of the MTIL benchmark. A similar
conclusion holds from the results of MTIL Order-II com-
pared with MTIL Order-I. Our method ZSCL outperforms
others by 9.2% on the Avg. score and 18.1% on the Last
score with only a 1.2% performance loss on the Transfer
score. This shows our approach can work for different or-
ders of the multi-domain task incremental learning.

In addition, compared with Order-I, previous methods
achieve a much lower Last score (e.g., for Continual-
Learning, Order-I has 77.3%, while Order-II has 65.3%).
With ZSCL, the Last score is similar (83.6% compared with
83.4%). This shows our method is more robust towards dif-
ferent training orders.

Table 7. Dataset description of multi-domain task incremental
learning.

Dataset # classes # train # test Recognition Task

Aircraft [43] 100 3334 3333 aircraft series
Caltech101 [17] 101 6941 1736 real-life object
CIFAR100 [31] 100 50000 10000 real-life object
DTD [7] 47 1880 1880 texture recognition
EuroSAT [20] 10 21600 5300 satellite location
Flowers [45] 102 1020 6149 flower species
Food [4] 101 75750 25250 food type
MNIST [10] 10 60000 10000 digital number
OxfordPet [48] 37 3680 3669 animal species
StanfordCars [30] 196 8144 8041 car series
SUN397 [66] 397 87003 21751 scene category

Total 1201 319352 97109

D. Additional Conventional Class Incremental
Learning Results

We re-implement previous methods based on the CLIP
backbone for continual learning. For LwF-based [38, 13]
methods, we experiment with two choices for the teacher
model, the previous one and the initial one. We find the ini-
tial one gives out better performance and report this result.
For the WiSE-FT [64] method, we take the average of mod-
els after learning each task. We experiment with the average
between the previous and current one and the initial one and
the current one. Better results are reported.

The result of class-continual learning on ImageNet
benchmark is presented in Tab. 10. On IN100-B10, our
method outperforms others by 1.97% for the Avg. score
and 1.30% for the Last score. On IN100-B50, our method
outperforms others by 3.54% for the Avg. score and 6.62
for the Last score.

E. Limitation and Future Work
Our proposed method has a limitation that a reference

dataset is needed. A promising direction of the work is
to preserve the zero-shot transfer ability without the need
for an outside dataset. For example, we may generate a
synthetic image dataset as the reference dataset. Methods
like [58] can synthesize datasets from a network.

There is a trend in the deep learning community to build
large models with a huge dataset [5, 8], including vision-
language models [51, 24]. These models serve as founda-
tion models [3] for downstream tasks and require millions
of dollars for training. As re-training cost upsurges, con-
tinual learning is an efficient approach for updating these
models with custom usage.

In some cases, we want to correct wrong information in
the pre-training dataset or update old information with the
latest one. How to conduct this task with a reference dataset
is left as future work.



Table 8. Transfer, Avg., Last accuracy (%) of different continue training methods on MTIL benchmark in Order II.
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CLIP ViT-B/16@224px
Zero-shot 64.7 88.5 59.4 89.0 71.0 65.2 24.3 88.4 44.6 54.9 68.2
Fine-tune 89.6 92.7 94.7 94.7 97.5 81.8 62.0 95.1 79.5 98.9 89.6

Transfer
Continual-FT 85.9 59.6 57.9 40.0 46.7 11.1 70.0 30.5 26.6 37.7
LwF [39] 87.8 58.5 71.9 46.6 57.3 12.8 81.4 34.5 34.5 46.8
iCaRL [54] 86.1 51.8 67.6 50.4 57.9 11.0 72.3 31.2 32.7 48.1
LwF-VR [13] 88.2 57.0 71.4 50.0 58.0 13.0 82.0 34.4 29.3 47.6
WiSE-FT [64] 87.2 57.6 67.0 45.0 54.0 12.9 78.6 35.5 28.4 44.3
ZSCL∗ 88.8 56.7 75.5 58.8 62.5 16.1 87.0 42.0 44.0 66.5
ZSCL 88.3 57.5 84.7 68.1 64.8 21.1 88.2 45.3 55.2 68.2

Avg.
Continual-FT 42.1 70.5 92.2 80.1 54.5 59.1 19.8 78.3 41.0 38.1 42.3
LwF [39] 49.0 77.0 92.1 85.9 66.5 67.2 20.9 84.7 44.6 45.5 50.5
iCaRL [54] 52.0 75.9 77.4 74.6 58.4 59.3 11.7 79.6 42.1 43.2 51.7
LwF-VR 44.9 75.8 91.8 85.3 63.5 67.6 16.9 84.9 44.0 40.6 51.3
WiSE-FT [64] 52.6 79.3 91.9 83.9 63.4 65.2 23.3 83.7 45.4 40.0 48.2
ZSCL∗ 72.0 89.8 91.7 87.9 78.8 71.5 35.1 89.0 51.4 53.9 68.5
ZSCL 81.7 91.3 91.1 91.0 82.9 72.5 33.6 89.7 53.3 62.8 69.9

Last
Continual-FT 24.0 67.3 99.1 87.4 44.3 67.0 29.5 92.3 61.3 81.0 88.1
LwF [39] 34.6 69.6 99.3 88.7 61.1 72.5 32.5 88.1 65.6 90.9 87.9
iCaRL [54] 46.0 81.5 91.3 82.8 66.5 72.2 16.3 91.6 68.1 83.2 87.8
LwF-VR [13] 27.4 61.2 99.4 86.3 60.6 70.7 23.4 88.0 61.3 84.3 88.1
WiSE [64] 35.6 76.9 99.5 89.1 62.1 71.8 27.8 90.8 67.0 85.6 87.6
ZSCL∗ 63.5 89.6 99.2 92.4 84.5 78.3 55.2 92.4 74.6 97.4 88.6
ZSCL 78.2 91.1 97.6 92.5 87.4 78.2 45.0 92.3 72.7 96.2 86.3

Table 9. Comparison of different methods on MTIL in Order II.

Method Transfer ∆ Avg. ∆ Last ∆

CLIP ViT-B/16@224px
Zero-shot 65.4 0.0 65.3 0.0 65.3 0.0
Continual Learning 46.6 -18.8 56.2 -9.1 67.4 +2.1

LwF [39] 53.2 -12.2 62.2 -5.2 71.9 +6.6
iCaRL [54] 50.9 -14.5 56.9 -8.4 71.6 +6.3
LwF-VR [13] 53.1 -12.3 60.6 -7.4 68.3 +0.9
WiSE-FT [64] 51.0 -14.4 61.5 -5.9 72.2 +6.9

ZSCL∗ 59.8 -5.6 71.8 +6.5 83.3 +18.0
ZSCL 64.2 -1.2 74.5 +9.2 83.4 +18.1

Table 10. Comparison of state-of-the-art CL methods on different
ImageNet benchmarks, in class-incremental settings with 10 splits,
in terms of average and last accuracy values.

ImageNet100-B10 ImageNet100-B50
Methods Avg Last Avg Last

UCIR [23] - - 68.09 57.30
TPCIL [59] - - 74.81 66.91
PODNet [15] - - 74.33 -
DER [67] 76.12 66.06 77.13 72.06
DyTox [16] 73.96 62.20 - -
DyTox+ [16] 77.15 67.70 - -

CLIP 84.42 74.92 78.86 74.92
FT 83.10 70.72 80.31 72.48
LwF [39] 83.35 72.40 80.74 72.22
iCaRL [54] 83.40 70.96 79.76 73.96
LwF-VR [13] 82.53 69.68 80.82 70.18
ZSCL 86.39 76.22 84.28 79.54
Impr +1.97 +1.30 +3.54 +6.62



Table 11. Accuracy (%) of ZSCL method on MTIL benchmark with order I. Each row represents the performance on every dataset of the
model trained after the correponding task. Transfer, Avg., and Last metrics are shown in color.
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Transfer 86.0 67.4 45.4 50.4 69.1 87.6 61.8 86.8 60.1 66.8 68.1

Aircraft 55.1 86.0 66.3 44.9 49.2 70.6 88.3 53.6 87.4 61.3 65.7
Caltech101 48.9 94.2 68.6 44.7 50.4 67.0 87.6 55.2 85.0 61.0 65.9
CIFAR100 47.1 93.1 86.2 46.5 50.1 68.8 87.7 63.4 87.6 60.6 67.4
DTD 47.0 93.8 85.0 76.2 51.7 69.9 87.8 65.9 88.4 61.2 67.2
EuroSAT 46.1 92.8 84.0 75.0 97.8 69.1 87.1 67.6 88.0 60.3 67.1
Flowers 43.8 92.5 83.2 73.5 97.2 96.3 87.1 63.3 86.5 58.8 66.9
Food 44.3 92.2 82.9 71.2 96.8 93.8 92.2 63.5 87.3 60.3 67.9
MNIST 41.9 91.9 80.5 67.8 95.3 89.5 91.9 99.0 84.4 58.4 66.5
OxfortPet 41.6 91.8 81.3 68.2 95.7 90.7 92.0 98.8 95.3 58.9 66.4
Cars 39.8 91.9 81.8 68.9 95.7 91.6 91.8 98.8 94.5 85.8 67.3
SUN397 40.6 92.2 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2 83.6

Avg. 45.1 92.0 80.1 64.3 79.5 81.6 89.6 75.2 88.9 64.7 68.0 75.4

Table 12. Accuracy (%) of ZSCL∗ method on MTIL benchmark with order I. Each row represents the performance on every dataset of the
model trained after the correponding task. Transfer, Avg., and Last metrics are shown in color.
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Transfer 78.3 64.0 42.9 45.2 63.5 84.2 56.1 78.9 44.1 64.3 62.2

Aircraft 63.5 78.3 61.5 41.1 48.5 61.3 83.5 51.5 80.4 42.4 62.4
Caltech101 56.1 93.0 66.6 43.7 40.3 64.7 84.7 57.2 82.4 47.4 66.0
CIFAR100 55.5 92.7 88.7 44.0 47.6 62.9 85.0 58.1 82.9 48.0 66.8
DTD 55.3 92.9 87.8 77.9 44.5 66.1 84.8 57.8 86.2 49.7 66.6
EuroSAT 54.5 92.9 85.8 76.4 98.5 62.7 83.1 58.0 82.5 46.8 65.5
Flowers 53.5 92.5 85.5 76.5 98.1 97.7 84.2 55.6 83.2 47.9 66.6
Food 53.0 92.3 85.0 75.6 98.1 96.1 92.6 54.7 83.3 51.7 67.9
MNIST 34.2 89.1 75.1 57.5 88.6 66.3 87.1 99.6 50.4 24.4 55.0
OxfortPet 42.4 91.2 79.5 66.8 91.9 87.5 90.1 99.6 94.4 39.0 61.4
Cars 44.2 92.5 80.7 70.4 93.2 92.4 90.9 99.6 93.9 88.4 65.1
SUN397 46.0 92.3 81.2 72.4 93.0 92.1 90.8 99.6 93.3 86.6 81.7 84.5

Avg. 50.7 90.9 79.8 63.8 76.6 77.3 87.0 71.9 83.0 52.0 65.9 72.6


